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Stabilizing the blue phases
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We present an investigation of the phase diagram of cholesteric liquid crystals within the framework of

Landau—de Gennes theory. The free energy is modified to incorporate all three Frank elastic constants and to
allow for a temperature dependent pitch in the cholesteric phase. It is found that the region of stability of the
cubic blue phases depends significantly on the value of the elastic constants, being reduced when the bend
elastic constant is larger than splay and when twist is smaller than the other two. Most dramatically we find a
large increase in the region of stability of blue phase I, and a qualitative change in the phase diagram, in a
system where the cholesteric phase displays helix inversion.
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I. INTRODUCTION

Liquid crystals are anisotropic fluids typically composed
of long, thin, rodlike molecules. They display long-range
correlations in molecular orientation and show large length
scale deformations to even relatively weak external perturba-
tions. As a result they may be well described at the con-
tinuum level by a vector field called the director [1,2], which
represents the average local molecular alignment.

A topic of long standing interest is the role of chirality in
liquid crystals. The addition of small quantities of chiral dop-
ant to a liquid crystal results in the appearance of a periodic
structure in the molecular orientation with length scales typi-
cally in the optical range. The most common form for this
periodic structure is a helical arrangement, known as the cho-
lesteric phase, where the molecules display a natural twist
along one direction. However, one of the most interesting
features of chirality is that it also allows for more compli-
cated structures. Although the cholesteric is always the ther-
modynamically stable phase at sufficiently low temperatures,
it is found experimentally that upon cooling from the isotro-
pic fluid, systems of high chirality display a series of first
order phase transitions to brightly colored “blue phases”
(BPs) before the cholesteric is reached. There are as many as
three thermodynamically distinct blue phases in the absence
of external fields, all of which appear only in a narrow tem-
perature range (typically ~1 K) just below the clearing
point. Two of them, BPI and BPII, display selective Bragg
reflections in the visible range which can be indexed by cu-
bic space groups 0%7(/4,32) and O?*(P4,32), respectively,
while the third, BPIII, is amorphous.

In the early and mid 1980’s a series of important theoret-
ical works showed how the cubic blue phases could be un-
derstood within both of the two principal theoretical con-
tinuum models of liquid crystals; the Oseen-Frank theory for
the director field [3], and the Landau—-de Gennes theory
based on the Q-tensor order parameter [4,5] (a review of
both approaches is given in Ref. [6]). In both cases the pic-
ture which emerged was one of frustration between compet-
ing effects. From the director field point of view the locally
preferred structure is one of “double twist,” but this is found
to be incompatible with global topological requirements.
Therefore the cubic blue phases emerge as a regular array of
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double twist cylinders separated by a network of disclination
lines. Complementing this the Landau—de Gennes theory pic-
ture of blue phases is that of a linear combination of biaxial
helices chosen to optimize the competing bulk and gradient
free energies.

The theoretical models were successful in accounting for
the occurrence, symmetry, and general properties of the cu-
bic blue phases, even assisting in the determination of spe-
cific space groups. However, the approximations necessary
to make the analytic calculations feasible meant that quanti-
tative comparison with experiment was largely not possible.
Furthermore, the theories have a certain inflexibility since
they retain a bare minimum of parameters and in this sense
provide a “one size fits all” description of the blue phases.
This may have been adequate twenty years ago, but as the
field has developed its shortcomings have become more ap-
parent. One example of this is the insensitivity of the
Landau—de Gennes theory of the blue phases to the value of
the twist elastic constant. In contrast, the Frank director
theory predicts that the twist elastic constant plays a central
role [3] and furthermore, it has been observed experimentally
that the stability of the cubic blue phases depends as much
on the value of the twist elastic constant as it does on the
chirality [7].

More recently there has been considerable interest in try-
ing to manipulate the properties of the cubic blue phases by
adding a variety of chemical dopants [8-11], with the long
term goal of utilizing blue phases for device applications
[12—15]. One of the major obstacles to the use of blue phases
in devices is their limited range of thermodynamic stability.
However, Coles and Pivnenko have recently reported achiev-
ing a 40 K range of stability for BPI in a bi-mesogenic com-
pound doped with a chiral additive [16]. Although some
questions remain as to whether their blue phase is thermody-
namically stable or just metastable, it seems clear that the
current theoretical picture of the blue phases is insufficient to
account for all of the reported observations. Therefore, in
this work, we ask whether extending the traditional
Landau—de Gennes theory beyond a one elastic constant ap-
proximation will allow for a better comparison with experi-
ments and perhaps aid the search for more practically useful
blue phases.

We first present a comparison of the Frank director and
Landau—de Gennes theories, showing the relationships be-
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tween them and discussing the limitations of both. Then we
review how the Landau—de Gennes theory can be modified to
account for three independent Frank elastic constants and a
temperature dependent helical pitch in the cholesteric phase.
The modified theory is treated in detail analytically for the
cholesteric phase and it is shown that the theory allows for a
description of the change in sense of the cholesteric helix
upon decreasing temperature, which is observed in some sys-
tems [1,17,18]. Next we present a numerical determination
of the thermodynamic phase diagram of chiral liquid crystals
for a range of physical parameters. To do this we introduce a
new technique for determining the unit cell size of the blue
phases, allowing for a full minimization of the free energy.
Although the qualitative features remain unchanged when
the elastic constants are varied, there is significant quantita-
tive movement of the phase boundaries and the range of
stability of the blue phases is brought to lower values of the
chirality than has been reported previously. Our most striking
result is that the range of stability of BPI is increased dra-
matically in systems where the cholesteric undergoes helical
sense inversion.

II. THE FRANK FREE ENERGY AND LANDAU-DE
GENNES THEORY

The most widely used description of liquid crystals is the
Frank director field theory [1,2]. The local orientation of the
liquid crystal is described by a directionless unit vector field
n(r), called the director. It is found experimentally that the
director satisfies an equivalence relation n~—n, so that its
configuration space is the real projective plane, n € RP. The
static properties of liquid crystals are well described by di-
rector field configurations which minimize the Frank free
energy subject to appropriate boundary conditions

1 1 1
3 [ s i e
1k 2
+ 5K33(n XV Xn)|, (2.1)
where K%, K5,, and K}, are the Frank elastic constants,
known as splay, twist, and bend, respectively. The parameter
qg is nonzero only in chiral liquid crystals where it deter-
mines the pitch of the cholesteric helix.
In discussions of the cholesteric blue phases the Frank
free energy is supplemented by a saddle-splay term [1,2]
1
§K§4V [(m-V)n-n(V-n)]. (2.2)
In ordinary liquid crystals this term can be safely treated as a
total divergence and integrated to a surface term, which is
then discarded. However, in systems possessing defects, such
as the blue phases, variations in the magnitude of the order
become as relevant as variations in the direction of the order.
The value of the Frank elastic constants depends on the mag-
nitude of the order (in a manner which can be determined

using the Landau—de Gennes theory) so that in such cases the
saddle-splay invariant may not be treated as a total diver-
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gence and can play an important role in the energetics of
systems with defects. Indeed it has been shown that, within
the director field framework, the saddle-splay term is entirely
responsible for the thermodynamic stability of the blue
phases [1,3,6].

There are two principal drawbacks of the director field
theory; first, the magnitude of the order has to be put in by
hand, and second, the effect of biaxiality is not included.
Both of these shortcomings are most severe in the vicinity of
defects where it is necessary to adopt a more sophisticated
framework in order to give a complete description. This is a
particular problem for theories of the blue phases since they
contain a regular lattice of defects. An alternative option is to
use a traceless symmetric second-rank tensor Q as a more
general order parameter for liquid crystals. From a physical
point of view it may be thought of as proportional to the
anisotropic part of the magnetic susceptibility, or dielectric
tensor. A phenomenological description of the energetics and
phase transitions of liquid crystals can be provided by con-
structing a Landau theory using the Q tensor [1]. This com-
prises a bulk contribution

Foulk — ‘l/ f &r{atr(Q?) — btr(Q?) + c[tr(Q*)1?}, (2.3)

and a gradient contribution, accounting for the energy cost
associated with distortions of the order

perad _ ‘l/ f d3rLl—‘L1(V X Q+2q,Q)* + il‘z(v Q7.
(2.4)

The bulk free energy describes a first order phase transition
between the ordered and disordered fluids. The parameters b
and c are positive constants and a is a thermal scaling vari-
able, which changes sign with decreasing temperature and
has a linear dependence sufficiently close to the critical sur-
face. The parameter g, defines the helical pitch. Since it is
assumed that ¢ is independent of temperature it follows that
so too is the cholesteric pitch. It is also clear that this theory,
taken to second order in the derivatives of Q, can only ac-
count for two independent Frank elastic constants; it has long
been known that the constraint is that splay equals bend
¥ =K§3. In order to remove this degeneracy, and allow for a
temperature dependent helical pitch, it is necessary to retain
higher order terms in the gradient free energy.

The construction of invariants contributing to the gradient
free energy at higher than quadratic order has been consid-
ered previously by a number of researchers [19,20]. A clear
and thorough presentation of the structure of the free energy
expansion is given in Ref. [21]. Here, for completeness, we
review the aspects relevant to our current discussion. At cu-
bic order in the Q tensor, and at most quadratic order in
gradients, we can construct the following invariants:

eathadeeVche’ (253)
EathadeeVdch’ (25b)
QahanbCVdch’ (25C)
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QubVaQeaVQeas (2.5d)
OtV aQeaV Q- (2.5¢)
bV QupViQeas (2.51)
QubV e QucVaQha (2.52)
Qb LQadV L (2.5h)
Qb V cQaaVaQpe- (2.51)

Since there are now many more Landau—de Gennes in-
variants than there are Frank elastic constants, it is instruc-
tive to see how the two descriptions are related, which may
be done by letting the Q tensor assume a uniaxial form
0.,=S3n,n,— 8,,) and identifying the director field with the
eigenvector of the Q tensor corresponding to its maximal
eigenvalue. Lengthy calculations lead to the following ex-
pressions for the Frank elastic constants in terms of the co-
efficients of the Landau—de Gennes theory (for details see,
e.g., Ref. [21])

2KY = 98%(Ly, + Lyp) + 953 (= Lyy — 2Ly — Lys + 2Ly + Lag

+2L3), (2.6)
2K5, = 185%Ly; + 983 (= 2Ly + Lyg), (2.7)
2K§3 = 9S2(L21 + L22) + 953(2L33 + 4L34 + 2L35
= Ly7+Lag — L), (2.8)
F F_ 2 3
4K22q0 = 366]05 Lz[ +9§ (L31 + L32) . (29)

It is not realistic to study the effect of all possible cubic
terms in detail and consequently we shall restrict our atten-
tion to a subset. We choose to focus on three invariants
(2.5a), (2.5d), and (2.5h). These are chosen for a number of
reasons; first, it is clear that one should retain at least one
chiral and one achiral invariant. Since there does not appear
to be any substantial difference between the two chiral in-
variants we feel confident that no qualitative changes would
result from retaining both terms. It is more difficult to choose
representatives of the achiral invariants. The invariant (2.5h)
is retained because uniquely amongst the achiral invariants it
contributes equally to all three Frank elastic constants. This
leaves only a choice of invariant that will distinguish be-
tween the Frank splay and bend elastic constants. We choose
to use Eq. (2.5d) partly because it has been used in previous
work [22,23], partly because it gives the largest distinction
between K%, and K%, and partly because we found that it has
the largest contribution to the energetics of a single double
twist cylinder.

To summarize, in the remainder of this paper we shall
investigate the properties of the free energy
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1 2
F= v f d%{ itr(Qz) —Votr(Q3) + [tr(Q) ] + KZ{(V X Q
L L
+Q)2+£(V'Q)2+iQ2-VXQ
Ly, Ly,

L L
+ ﬁQabanchchd + ﬁQabVCQadVCde:| } . (2 10)
Ly, Ly,

We have made use of the well-known rescaling Q
—(b/\6¢)Q, to reveal the redundancy of the parameters b
and c in the bulk free energy and shifted to dimensionless

variables. The change of variables is r—r/2q, F
—b*/(288¢3c*)F and we define

Ly := 6¢Ly/b?, Ly, := 6¢Lo/b?, (2.11)

K= Zqo\",l;, 7:= 6ac/b*. (2.12)

We note that the parameter «, which is called the chirality, is
the same as that defined by Grebel et al. [4], but that our
reduced temperature 7 differs from their definition; the two
being related according to tgyg=T7+ k%, Where fgys is the re-
duced temperature used in Ref. [4].

III. CHOLESTERIC PHASE

We first investigate how including cubic order invariants
in the gradient free energy, Eq. (2.10), modifies the usual
theory of the cholesteric helix. It will be assumed that the
helical order parameter still takes the form dictated by the
quadratic theory, namely,

2.0 0 0 0 0
Q=_—/£—2h 0 -1 0 +% 0 cos(kx) sin(kx)
V6 lo 0 -1/ “2\0 sintkr) - cos(ky)

(3.1)

With this form of Q tensor the expression for the free energy
becomes [24]

1
Fcholesteric = Z(T"' Kz)(Qi + Q%) + (Q131 - 3QhQ%) + (Qi + Qz%)2

2
K
+ O3l - BOYK = 2(1 - aQ))K], (3.2)
where a:= —L31/(\*‘J€L21) and B:: (2L34—L38)/(\“‘“€L21). Mini-
mizing the free energy leads to the set of Euler-Lagrange
equations

:ﬂ’ (3.3a)
1- B0,
1
ST+ 10+ 3(0) - 03) +40,(0)+ 03)
< 2
+ 7 O3l B+ 2aK] =0, (3.3b)
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1 2
S (74100, = 60,0, +40:(Q} + 03) + T 0:l(1 - BOE

-2(1 - aQ,)k]=0. (3.3¢)

Using these, and assuming Q,#0 as expected for a first
order transition, we readily obtain

1
Q§=§<12Qh+ 2( ﬁQh) ( + 2))—Qi, (34)
). o (1-aQ,)? ( __[ 1—th]
180, + k" Qpy————— 1- B0, =056 ) 2a- Bl—ﬂQh
Xﬂ) (3.5)
1 - B,

In general these equations must be solved numerically; how-
ever, they can be easily solved when a=£8=0, and we re-
cover the usual results [4,6,25]

_M<1 IL)
9= \"* V"o )

, 27+ 37
2724 M3

(3.6a)

(3.6b)

The main feature which arises from the inclusion of
higher order terms is that the helical wave vector now de-
pends on the temperature. As Eq. (3.3a) shows, the wave
vector depends on the amplitude of the homogeneous part of
the order parameter, and since the order parameter depends
on the temperature, it follows that so does the cholesteric
pitch. It should be noted that, even with such a simple modi-
fication of the free energy, we can already account for the
experimentally observed inversion of the helical sense with
decreasing temperature found in some cholesterics [1,17,18].
According to the present theory the cholesteric wave vector
changes sign when Q,=1/a. When this value is substituted
into Egs. (3.4) and (3.5) we obtain the following expression
for the inversion temperature:

4
T =—GBa—-8) - k. (3.7)
a
At the inversion itself we find 0,=130Q, and
-1 0 O
Q=—0 2 0 | (3.8)
Vo o0 -1

which corresponds as expected to a uniaxial nematic with
director n=(0, 1,0). Other orientations of the nematic within
the yz plane may be obtained by adding a constant phase
shift to the sin and cos terms in Q in Eq. (3.1). It is clear that
within this theory, as observed experimentally, the helical
inversion is a smooth transition which does not involve any
discontinuities in physical quantities, i.e., it is not a phase
transition.

The isotropic-cholesteric transition temperature is ob-
tained by supplementing Egs. (3.4) and (3.5) with the condi-
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tion that the free energy [Eq. (3.2)] be zero. A short calcula-
tion leads to the following equation for Q) at the transition

temperature:
(4Qh+K_2(1—th)2><6 Kl—th[z Bl—thDZ
4 1-pB0, 21-p0, 1 - B0,
B (24Qh+ K(1-aQ,)* K0yl -aQ,
1-80, 2 1-BQ,

aQy [\
[2“ ﬁl—ﬁQhD =0

Again when a=B=0 we recover the usual results [4,6,25]

1 K2 K2)
1C
= 1=l
O 8( 37NV

1 5 K2 3/2
TIC=E 1—K+ 1+? N

where 7 is the temperature at which the isotropic-
cholesteric transition occurs. A situation of some experimen-
tal interest occurs when the cholesteric undergoes helix in-
version at the isotropic-cholesteric transition temperature
[17]. This case may be solved exactly by setting Q,=1/a in
Eq. (3.9). We find =4 and

(3.9)

(3.10a)

(3.10b)

THI = Tlc—l—K (311)

which is precisely the transition temperature for a nematic
(with nonzero «). This particular case provides a guide to the
range of values that « can be expected to take in experimen-
tal systems.

In the general case the equation can be solved numeri-
cally. Figure 1(a) shows the isotropic-cholesteric transition
temperature as a function of chirality for a selection of values
of @ and . The general trend can be easily understood on
the basis of the effect that the parameters have on the helical
pitch. Increasing « increases the pitch and shifts the liquid
crystal towards nematic behavior, while increasing B de-
creases the pitch and hence shifts away from the nematic
state. The temperature dependence of the helical wave vector
is shown for the same set of values of @ and B in Fig. 1(b).
It can be seen that the wave vector varies approximately
linearly with temperature except in the immediate vicinity of
the transition temperature. It may at first seem unusual that
increasing 3 should lead to a larger temperature dependence,
however, this can be understood by noting that the inversion
temperature depends only on « and that increasing 3 leads to
a larger wave vector at the transition temperature.

Finally, it is known that if the chirality is sufficiently large
then the isotropic-cholesteric transition is second order in-
stead of first. We can calculate the maximum value of «
compatible with a first order transition by setting Q,=0 in
Eq. (3.9). The resulting equation is solved to obtain [26]

2—,8[_ 1+V1+3QRa-p)].

K. =
max
a0

(3.12)

In what follows it will be seen that this limit is never reached
due to the intervention of blue phases.
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FIG. 1. (Color online) (a) Isotropic cholesteric transition tem-
perature as a function of chirality for a range of parameter values:
(i) @=B=0, (i) a=2,B=0, (iii)) a=2,B=1, (iv) a=4,B=0. (b)
Temperature dependence of the cholesteric wave vector for the
same set of parameters as in (a) (all cases are for k=0.05).

IV. NUMERICAL METHOD

Our next aim in this paper is to construct the phase dia-
gram resulting from a minimization of the modified
Landau—de Gennes free energy, Eq. (2.10), taking into ac-
count the two cubic blue phases. Although a certain amount
on the blue phases can be done analytically (see, e.g., Ref.
[27]), this approach involves adopting an approximate form
for the order parameter and only gives a constrained minimi-
zation. Furthermore, although the analytic theory correctly
identifies the two structures observed in experiments, it does
not reproduce the correct order of appearance of the two
phases at low chiralities. A full minimization can be achieved
numerically and has been described recently in Ref. [28] for
the one elastic constant approximation. The Q tensor is re-
laxed towards the minimum of the free energy according to
the equation [29]

aQab

a THa,

(4.1)

where I' is a collective rotational diffusion constant and the
molecular field is given by
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SF 1 <5F)
H=- —+—trl — |L.
NQ 3 1

Since we are entirely concerned with static equilibrium con-
figurations we have neglected the coupling to fluid flow, both
in the above equations and in our numerical simulations. The
equations are solved using a three dimensional lattice Boltz-
mann algorithm, the details of which have been given in Ref.
[30].

To study the different phases, cholesteric, BPI or BPII, it
is necessary to implement appropriate initial conditions for
the simulation. The Q tensor is initialized using analytic ex-
pressions appropriate to the high chirality limit which act to
define the symmetry of the chosen phase. Under subsequent
numerical evolution according to Eq. (4.1) the system re-
laxes to that structure of the same symmetry which mini-
mizes the free energy. We are therefore able to obtain, for
any value of the parameters, local minima of the free energy
corresponding to each of the cholesteric and blue phases. The
global free energy minimum was taken to be the smallest of
these calculated local minima.

We have seen in Sec. III that the inclusion of cubic invari-
ants in the gradient free energy leads to a temperature depen-
dent helical pitch in the cholesteric phase, Eq. (3.3a). For the
blue phases as well, the unit cell size is temperature depen-
dent, so that to achieve a full minimization of the free energy
it is necessary to set the correct unit cell size in the simula-
tion. This unit cell size is not known a priori, but rather
depends on the magnitude of the order parameter, a quantity
which is only determined by the numerical minimization.
Therefore we must introduce a means of determining, and
setting, the unit cell size as the Q tensor evolves during the
simulation. We can account for a change in unit cell size by
rescaling the gradient contributions to the free energy and
molecular field. This is accomplished in practice by changing
the elastic constants as follows:

(4.2)

qo= qz)“it/r, (4.3a)

Ly, =L X 72, (4.3b)

L3b = Lg};t X r2, (430)

where a=1,2, b=1,...,9, a superscript “init” denotes the

initial value of a simulation parameter and r is the appropri-
ate rescaling factor, which in previous analytic [4] and nu-
merical [28] work was referred to as the “redshift.”” One
problem with the analytic theories is that the value of the
redshift is not determined exactly, but only for the approxi-
mate form of the Q tensor that is assumed. Similarly, in
previous numerical work, the redshift was assumed to take
the value suggested by the approximate analytic calculations.
The exact redshift for the cholesteric phase could be calcu-
lated by obtaining the numerical value of Q,, and using Eq.
(3.3a). However, a similar approach is not available for the
blue phases and consequently it is more useful (and easier) to
calculate it using the free energy as follows: since the free
energy is quadratic in gradients, it may be written formally in
k space as
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FIG. 2. (Color online) Comparison of lattice Boltzmann (<)
and analytic (solid line) solutions for the helical pitch in a choles-
teric displaying helical sense inversion. (a) Cholesteric wave vector
and (b) pitch against reduced temperature 7.

F=ak®+bk+c, (4.4)

where the coefficients a, b, and ¢ depend on the Q tensor, but
not on k. The optimum wave vector is given by k=—b/2a,
and since the coefficients a and b are determined by the
simulation every timestep it is straightforward to use these
values to determine the exact value for the redshift.

In order to verify that the procedure was working success-
fully, and to check the level of accuracy that could be ob-
tained, we used the lattice Boltzmann algorithm to calculate
the wave vector of a cholesteric undergoing helix inversion
and compared it to the theory described in Sec. III. Simula-
tion parameters were chosen to set a=2.0 and k=0.096. The
results are shown in Fig. 2. We have plotted both the helical
wavevector, which is the relevant quantity theoretically, and
the pitch, since this is more frequently given in experimental
work. As can be seen the agreement is excellent even very
close to the inversion point.

Results. In this section we describe the numerical phase
diagram obtained using the lattice Boltzmann algorithm out-
lined above. Figure 3(a) shows the phase diagram obtained
for the one elastic constant approximation with numerical
optimization of the unit cell size. For comparison, the phase
diagram for a fixed unit cell size determined in Ref. [28] is
reproduced in Fig. 3(b). We note that optimization of the unit
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FIG. 3. Numerical phase diagrams in the one elastic constant
approximation. 7, the reduced temperature, and «, the chirality, are
defined by Eq. (2.12). (a) Optimization of the unit cell size. (b)
Phase diagram with fixed unit cell size, after Ref. [28].

cell size has extended the range of stability of BPI, both
relative to the cholesteric phase and relative to BPII. The
movement of the cholesteric phase boundary is quite signifi-
cant, with the triple point moving to lower chirality by about
20%. This is due to the optimum redshift taking a lower
value at these chiralities than was assumed previously. Based
on analytic calculations of Grebel er al. [5] the redshift was
assigned the value 0.79 in Ref. [28]. However, we find a
much lower value, with average 0.68 at the cholesteric-BPI
phase boundary (the value is roughly independent of tem-
perature, except very close to the isotropic transition tem-
perature). In contrast, at the BPI-BPII phase boundary we
obtain an average redshift of 0.77 for BPI and 0.86 for BPIIL.
These values are in better agreement with the analytic results
of Grebel et al., primarily because the chirality at this phase
boundary is much closer to the values of chirality where the
analytic calculations predict the blue phases are stable. In
what follows we will use Fig. 3(a) as a reference phase dia-
gram relative to which the effect of varying the Landau—de
Gennes parameters can by measured.

We next constructed phase diagrams for different ratios of
the elastic constants. Here one expects that the qualitative
features of the phase diagram will be retained, but it is none-
theless of interest to determine how large a quantitative shift
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FIG. 4. Phase diagrams obtained for different values of the elas-
tic constants. 7, the reduced temperature, and «, the chirality, are
defined by Eq. (2.12). (a) Ki=K5=05K, (b) K=KE=15K5.

can be obtained. Figure 4 shows the phase diagrams obtained
upon separately varying the twist and bend elastic constants.
To investigate the effect of the bend elastic constant we
chose parameter values L, =L,,=L3,=0.02, L3z=0 which
corresponds to a ratio of bend to splay of about 1.75, while
splay and twist remain degenerate. The stability of BPI is
seen to decrease quite significantly relative to the cholesteric
phase while at the same time there is a small increase in
stability over BPII. There is only a minor shift in the
cholesteric-BPI phase boundary at the transition temperature,
however, as the temperature decreases the shift becomes
larger. For example, at a reduced temperature of 7=-2 the
phase boundary occurs at a chirality of k= 1, representing a
shift to higher chiralities of almost 70% as compared to the
one elastic constant case. The value of the redshift is mark-
edly increased, with the average value for BPI at the choles-
teric boundary being 0.81. However, it was shown in Sec. III
that the cholesteric wave vector depends on the value of L3y
and hence has also increased. This raw value of the redshift
no longer represents the most directly accessible quantity
and a more relevant figure is the ratio of the BPI redshift to
that of the cholesteric, since this can be measured experimen-
tally by means of the discontinuity of the back scattered
Bragg peak. For this quantity we obtain an average of 0.67
and note the strong similarity of this value with that obtained
in the one elastic constant approximation.
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At the BPI-BPII phase boundary the redshift is 0.87 and
0.97 for BPI and BPII, respectively. Again, it is the ratio of
these values which is more directly relevant to experiment.
The ratio of the O% unit cell size to that of O? is 0.90, and
again we note a strong similarity with the ratio obtained from
the one elastic constant approximation 0.89.

The value of the twist elastic constant is controlled by the
Landau—de Gennes parameter L,,. In most liquid crystals the
twist elastic constant is smaller than either splay or bend. In
order to match this, we constructed the phase diagram for
parameter values L,;=0.02, L,,=0.04, L3;=L33=0, which is
shown in Fig. 4(b). This choice of parameters resulted in a
ratio of splay to twist of about 1.5, while splay and bend
remained degenerate. Again we observe that the stability of
BPI is reduced relative to the cholesteric phase by an amount
similar to that seen by varying the bend elastic constant. The
values of the redshift for both BPI and BPII are only very
slightly increased relative to their values in the one elastic
constant limit, while the cholesteric wave vector is insensi-
tive to the value of L,,. This reveals an intriguing feature,
that while the phase boundaries and absolute values of the
redshift can vary appreciably, the ratios of the redshift for the
different phases, and hence the discontinuities in backscat-
tered Bragg peaks, are essentially independent of the values
of the elastic constants.

Finally, we investigated the effect of the chiral cubic in-
variant on the blue phases. We chose to use Lyj=Ly=Lsy
=0.02, L33=0.04, «=2.0. (For the cholesteric phase this sets
B=0 and gives a ratio of bend to splay of about 1.6.) The
phase diagram is shown in Fig. 5. The value of « is such that
the cholesteric undergoes helical sense inversion at a reduced
temperature of about 7=—2. What is remarkable is the dra-
matic increase in stability of BPI relative to the cholesteric
phase. The region of stability has been increased down to
chiralities as low as k=0.07 and at such low chiralities the
phase boundary is essentially independent of « for all 7. In
addition, we find a very small region of stability for BPII
located close to the isotropic transition. As shown in greater
detail in Fig. 5(b) this occurs in a narrow temperature inter-
val at chiralities lower than those for which BPI is stable,
representing a reversal of the order of appearance of the two
blue phases. In the region where BPII is stable we find a
redshift of 0.36. In contrast to the situation without the chiral
invariant, this is smaller than the BPI redshift, which takes
the value 0.43. Again, the absolute values of the blue phase
redshifts are not as relevant as their ratios to that of the
cholesteric phase. In this case we find the cholesteric redshift
is 0.49 at the isotropic transition temperature, giving ratios of
0.88 for BPI and 0.74 for BPII, both of which are signifi-
cantly different to those obtained in the one elastic constant
limit.

Since BPI is now stable over a much larger temperature
range it displays a significant variation in unit cell size as the
temperature is lowered. As an illustration of this, the BPI
redshift is 0.19 at a reduced temperature of 7=~-5, corre-
sponding to more than a twofold increase in the lattice pa-
rameter. A plot of the temperature dependence of the BPI
redshift is shown in Fig. 6. For comparison the helical wave
vector of the cholesteric phase is also plotted on the same
graph.
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FIG. 5. (a) The numerical phase diagram obtained with the chi-
ral invariant (2.5a) added to the free energy. The magnitude of this
term was chosen so as to produce helical sense inversion in the
cholesteric phase at a temperature not far below the isotropic tran-
sition temperature. 7, the reduced temperature, and «, the chirality,
are defined by Eq. (2.12). (b) An enlargement of the region near the
isotropic transition temperature. Note the reversal in the order of
appearance of BPI and BPII as a function of chirality.

V. CONCLUSION

We have investigated numerically the phase diagram of
the cholesteric blue phases for a range of parameter values
within the framework of a modified Landau—de Gennes
theory. The traditional Landau—de Gennes theory has long
been known to only accommodate two independent Frank
elastic constants and to have a temperature independent cho-
lesteric pitch. Both of these shortcomings were overcome by
retaining terms of cubic order in the Q tensor in the expan-
sion for the gradient free energy. Since the new terms were
added specifically to remove the degeneracy between splay
and bend, and to give a temperature dependence to the heli-
cal pitch they possess a clear and simple physical interpreta-
tion. In particular the value of the parameter  which con-
trols the strength of the chiral cubic invariant should be
relatively easy to estimate on the basis of Eq. (3.7) for the
helix inversion temperature. The magnitude of the elastic
constants for the achiral cubic invariants is more difficult to
ascertain. Although this may be estimated from the ratios of

PHYSICAL REVIEW E 74, 061706 (2006)

(@) os}
04f
0.3f

BPI

02t ¢ ©

01r

wavevector

Cholesteric

-5 -4 -3 -2 -1 0 1

|l Cholesteric

pitch
|
=

5 -4 -3 2 - 0 1
T

FIG. 6. (Color online) Lattice Boltzmann results for the tem-
perature dependence of the (a) wave vector and (b) pitch of the unit
cell of BPI along the cholesteric-BPI phase boundary at x=0.07
(¥ ). For comparison the cholesteric wave vector and pitch are also
given: lattice Boltzmann results (O), results from the calculation
presented in Sec. III (solid line).

the Frank elastic constants it is clear that because there are
more Landau—de Gennes elastic constants than Frank, the
latter are insufficient to uniquely determine the former (an
estimation of the magnitude of the cubic Landau -de Gennes
elastic constants was given in Ref. [19]).

The modified Landau—de Gennes theory that we have in-
vestigated provides a phenomenological description of heli-
cal sense inversion in the cholesteric phase. The inversion
arises as a natural consequence of the presence of including
higher order chiral invariants in the gradient free energy. Al-
though such higher order contributions are usually neglected
since they are deemed small compared to the terms already
retained, the fact that helix inversion is observed experimen-
tally demonstrates that these terms can play a significant
role. Mathematically, we comment that for systems undergo-
ing first order phase transitions (such as liquid crystals), al-
though the order parameter is small it is not infinitesimal,
and therefore the relative magnitude of a given term in the
Landau expansion depends not only on the power of the
order parameter but also on the size of any numerical coef-
ficient premultiplying it.

The primary aim of this paper was to investigate how
much the properties of the blue phases could be changed
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within the framework of Landau—de Gennes theory. In this
regard we have shown that the retention of cubic order terms
in the gradient free energy can lead to considerable changes
in the size of the blue phase unit cell and in their phase
diagram. Most dramatic amongst the results is the increase in
stability of blue phase I obtained in systems where the cho-
lesteric undergoes helical sense inversion. Again we com-
ment that this significant, qualitative change in the phase
diagram arises from retaining cubic order terms and demon-
strates that these give rise to more than just small changes in
the physical properties.

It is of interest to consider whether the mechanism con-
sidered here is a candidate to account for the increased range
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of stability in blue phase I recently reported by Coles and
Pivnenko [16]. It seems not, as apart from the large tempera-
ture range most features of their blue phase differ from those
obtained for the choice of parameters we made here. For
example, the numerics show an increase in the size of the
BPI unit cell with decreasing temperature, while in the ex-
perimental system the unit cell size shows a small decrease.
Also, numerically we find that BPII has a larger unit cell than
BPI at the transition between the two, in contrast to what is
found experimentally. However, we remark that the param-
eter space in the Landau—de Gennes theory is large enough
that these discrepancies could well be resolved by a different
choice of parameters.
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